Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Left ventricular strain changes at high altitude in rats: a cardiac magnetic resonance tissue tracking imaging study.

BACKGROUND: Long-term exposure to a high altitude environment with low pressure and low oxygen could cause abnormalities in the structure and function of the heart. Myocardial strain is a sensitive indicator for assessing myocardial dysfunction, monitoring myocardial strain is of great significance for the early diagnosis and treatment of high altitude heart-related diseases. This study applies cardiac magnetic resonance tissue tracking technology (CMR-TT) to evaluate the changes in left ventricular myocardial function and structure in rats in high altitude environment.

METHODS: 6-week-old male rats were randomized into plateau hypoxia rats (plateau group, n = 21) as the experimental group and plain rats (plain group, n = 10) as the control group. plateau group rats were transported from Chengdu (altitude: 360 m), a city in a plateau located in southwestern China, to the Qinghai-Tibet Plateau (altitude: 3850 m), Yushu, China, and then fed for 12 weeks there, while plain group rats were fed in Chengdu(altitude: 360 m), China. Using 7.0 T cardiac magnetic resonance (CMR) to evaluate the left ventricular ejection fraction (EF), end-diastolic volume (EDV), end-systolic volume (ESV) and stroke volume (SV), as well as myocardial strain parameters including the peak global longitudinal (GLS), radial (GRS), and circumferential strain (GCS). The rats were euthanized and a myocardial biopsy was obtained after the magnetic resonance imaging scan.

RESULTS: The plateau rats showed more lower left ventricular GLS and GRS (P < 0.05) than the plain rats. However, there was no statistically significant difference in left ventricular EDV, ESV, SV, EF and GCS compared to the plain rats (P > 0.05).

CONCLUSIONS: After 12 weeks of exposure to high altitude low-pressure hypoxia environment, the left ventricular global strain was partially decreased and myocardium is damaged, while the whole heart ejection fraction was still preserved, the myocardial strain was more sensitive than the ejection fraction in monitoring cardiac function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app