Add like
Add dislike
Add to saved papers

Preparation of Zn/Zr-MOFs by microwave-assisted ball milling and adsorption of lomefloxacin hydrochloride and levofloxacin hydrochloride in wastewater.

The Zn/Zr-MOFs were synthesized via microwave-assisted ball milling and subsequently characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), and scanning electron microscopy (SEM). The thermal stability of the Zn/Zr-MOFs was evaluated through thermogravimetry (TGA). The results demonstrated the exceptional adsorption properties of the Zn/Zr-MOFs towards Lomefloxacin hydrochloride and Levofloxacin hydrochloride. At a concentration of 30 ppm for Lomefloxacin hydrochloride, the addition of 30 mg of Zn/Zr-MOFs material resulted in an adsorption capacity of 179.2 mg•g-1. Similarly, at a concentration of 40 ppm for Levofloxacin hydrochloride, the addition of 30 mg Zn/Zr-MOFs material led to an adsorption capacity of 187.1 mg•g-1. Kinetic analysis revealed that the experimental data aligned well with a pseudo-second order kinetic model. Overall, these findings highlight the significant potential application of Zn/Zr-MOF materials in wastewater treatment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app