Add like
Add dislike
Add to saved papers

A model of alcoholic liver disease based on different hepatotoxics leading to liver cancer.

The worst-case scenario related to alcoholic liver disease (ALD) arises after a long period of exposure to the harmful effect of alcohol consumption along with other hepatotoxics. ALD encompasses a broad spectrum of liver-associated disorders, such as steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Based on the chronic administration of different hepatotoxics, including ethanol, sucrose, lipopolysaccharide, and low doses of diethylnitrosamine over a short period, here we aimed to develop a multiple hepatotoxic (MHT)-ALD model in the mouse that recapitulates the human ALD-associated disorders. We demonstrated that the MHT-ALD model induces ADH1A and NXN, an ethanol metabolizer and a redox-sensor enzyme, respectively; promotes steatosis associated with the induction of the lipid droplet forming FSP27, inflammation identified by the infiltration of hepatic neutrophils-positive to LY-6G marker, and the increase of MYD88 level, a protein involved in inflammatory response; and stimulates the early appearance of cellular senescence identified by the senescence markers SA-β-gal activity and p-H2A.XSer139 . It also induces fibrosis associated with increased desmin, a marker of hepatic stellate cells whose activation leads to the deposition of collagen fibers, accompanied by cell death and compensatory proliferation revealed by increased CASP3-mediated apoptosis, and KI67- and PCNA-proliferation markers, respectively. It also induces histopathological traits of malignancy and the level of the HCC marker, GSTP1. In conclusion, we provide a useful model for exploring the chronological ALD-associated alterations and stages, and addressing therapeutic approaches.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app