Add like
Add dislike
Add to saved papers

Deregulation in adult IgA vasculitis skin as the basis for the discovery of novel serum biomarkers.

INTRODUCTION: Immunoglobulin A vasculitis (IgAV) in adults has a variable disease course, with patients often developing gastrointestinal and renal involvement and thus contributing to higher mortality. Due to understudied molecular mechanisms in IgAV currently used biomarkers for IgAV visceral involvement are largely lacking. Our aim was to search for potential serum biomarkers based on the skin transcriptomic signature.

METHODS: RNA sequencing analysis was conducted on skin biopsies collected from 6 treatment-naïve patients (3 skin only and 3 renal involvement) and 3 healthy controls (HC) to get insight into deregulated processes at the transcriptomic level. 15 analytes were selected and measured based on the transcriptome analysis (adiponectin, lipopolysaccharide binding protein (LBP), matrix metalloproteinase-1 (MMP1), C-C motif chemokine ligand (CCL) 19, kallikrein-5, CCL3, leptin, C-X-C motif chemokine ligand (CXCL) 5, osteopontin, interleukin (IL)-15, CXCL10, angiopoietin-like 4 (ANGPTL4), SERPIN A12/vaspin, IL-18 and fatty acid-binding protein 4 (FABP4)) in sera of 59 IgAV and 22 HC. Machine learning was used to assess the ability of the analytes to predict IgAV and its organ involvement.

RESULTS: Based on the gene expression levels in the skin, we were able to differentiate between IgAV patients and HC using principal component analysis (PCA) and a sample-to-sample distance matrix. Differential expression analysis revealed 49 differentially expressed genes (DEGs) in all IgAV patient's vs. HC. Patients with renal involvement had more DEGs than patients with skin involvement only (507 vs. 46 DEGs) as compared to HC, suggesting different skin signatures. Major dysregulated processes in patients with renal involvement were lipid metabolism, acute inflammatory response, and extracellular matrix (ECM)-related processes. 11 of 15 analytes selected based on affected processes in IgAV skin (osteopontin, LBP, ANGPTL4, IL-15, FABP4, CCL19, kallikrein-5, CCL3, leptin, IL-18 and MMP1) were significantly higher (p-adj < 0.05) in IgAV serum as compared to HC. Prediction models utilizing measured analytes showed high potential for predicting adult IgAV.

CONCLUSION: Skin transcriptomic data revealed deregulations in lipid metabolism and acute inflammatory response, reflected also in serum analyte measurements. LBP, among others, could serve as a potential biomarker of renal complications, while adiponectin and CXCL10 could indicate gastrointestinal involvement.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app