Add like
Add dislike
Add to saved papers

The soybean lecithin-cyclodextrin-vitamin E complex nanoparticles stabilized Pickering emulsions for the delivery of β-carotene: Physicochemical properties and in vitro digestion.

In this work, soybean lecithin (LC) was used to modify β-cyclodextrin (β-CD) by esterifying with hydrophobic fat chains to become amphiphilic (LC-CD), and vitamin E (VE) was encapsulated in former modified β-CD complexes (LC-CD-VE), the new Pickering emulsions stabilized by LC-CD-VE and LC-CD complexes for the delivery of β-carotene (BC) were created. The surface tension, contact angle, zeta potential, and particle size were used to assess the changes in complexes nanoparticles at various pH values. Furthermore, LC-CD-VE has more promise as Pickering emulsion stabilizer than LC-CD because of the smaller particle size (271.11 nm), proper contact angle (58.02°), and lower surface tension (42.49 mN/m). The interactions between β-cyclodextrin, soybean lecithin, and vitamin E were confirmed using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA). The durability of Pickering emulsions was examined at various volume fractions of the oil phase and concentrations of nanoparticles. Compared to the emulsion stabilized by LC-CD, the one stabilized by LC-CD-VE showed superior storage stability. Moreover, for the delivery of BC, Pickering emulsions stabilized by LC-CD and LC-CD-VE can outperform bulk oil and Tween 80 stabilized emulsions in terms of UV light stability, storage stability, and bioaccessibility. This work could offer fresh perspectives on stabilizer alternatives for Pickering emulsion delivery systems.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app