Add like
Add dislike
Add to saved papers

Bone density estimation using tissue heat capacity.

Clinical Anatomy 2024 March 11
Osteoporosis onset is relatively asymptomatic, the condition often being identified only once a significant fracture occurs, leading to a potentially serious prognosis. Currently, early identification of osteoporosis is complicated by the difficulty in measuring bone density without using x-ray absorptiometry or quantitative ultrasound, so a simpler method for estimating bone density is needed. Given that bone is reported to have a lower specific heat than other tissues, we investigated the possibility of estimating bone density using this difference in tissue thermal properties. The tibia medial surface (shin) and medial malleolus (ankle) of 68 healthy volunteers were cooled using an ice bag, and skin surface temperatures and heat flow were recorded. These measurements were then used to calculate the heat energy transferred per unit temperature. Bone density was estimated by quantitative ultrasound using the T score OSISD, which is the participant's osteo sono-assessment index (OSI) compared to the average OSI of young adults. The heat energy transfer per unit temperature at the shin, but not the ankle, showed a significant negative correlation with T score OSISD (r = -0.413, p = 0.001). Multiple regression analysis showed that heat energy transfer per unit temperature at the shin was a significant predictor of T score OSISD, along with age and height. These results show that tissue thermal property measurements are useful for estimating bone density.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app