Add like
Add dislike
Add to saved papers

Machine-learning algorithms in screening for type 2 diabetes mellitus: Data from Fasa Adults Cohort Study.

INTRODUCTION: The application of machine learning (ML) is increasingly growing in biomedical sciences. This study aimed to evaluate factors associated with type 2 diabetes mellitus (T2DM) and compare the performance of ML methods in identifying individuals with the disease in an Iranian setting.

METHODS: Using the baseline data from Fasa Adult Cohort Study (FACS) and in a sex-stratified manner, we studied factors associated with T2DM by applying seven different ML methods including Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbours (KNN), Gradient Boosting Machine (GBM), Extreme Gradient Boosting (XGB) and Bagging classifier (BAG). We further compared the performance of these methods; for each algorithm, accuracy, precision, sensitivity, specificity, F1 score, and Area Under Curve (AUC) were calculated.

RESULTS: 10,112 participants were recruited between 2014 and 2016, of whom 1246 had T2DM at baseline. 4566 (45%) participants were males, aged between 35 and 70 years. For males, age, sugar consumption, and history of hospitalization were the most weighted variables regarding their importance in screening for T2DM using the GBM model, respectively; these variables were sugar consumption, urine blood, and age for females. GBM outperformed other models for both males and females with AUC of 0.75 (0.69-0.82) and 0.76 (0.71-0.80), and F1 score of 0.33 (0.27-0.39) and 0.42 (0.38-0.46), respectively. GBM also showed a sensitivity of 0.24 (0.19-0.29) and a specificity of 0.98 (0.96-1.0) in males and a sensitivity of 0.38 (0.34-0.42) and specificity of 0.92 (0.89-0.95) in females. Notably, close performance characteristics were detected among other ML models.

CONCLUSIONS: GBM model might achieve better performance in screening for T2DM in a south Iranian population.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app