Add like
Add dislike
Add to saved papers

Oleander attenuates hepatic inflammation in a TLR4-independent manner and by favorable modulation of hepatocellular global metabolome that supports cytoprotection.

ETHNOPHARMACOLOGICAL RELEVANCE: Nerium oleander is used to treat liver-associated chronic metabolic diseases in traditional medicinal systems across the globe. The hepatoprotective effects of oleander are mentioned in Indian and Chinese traditional medicinal literature.

AIM OF THE STUDY: The present study aimed to investigate the cellular mechanisms behind the hepatoprotective effects of a non-toxic dose of oleander (NO).

MATERIALS AND METHODS: The hepatoprotective effects of NO were tested against lipopolysaccharide (LPS)-treated HepG2 cells. Oxidative stress response was studied using cellular enzymatic assays, and gene expression was analyzed using qRT-PCR. HepG2 cells were pretreated with TAK-242 (pharmacological inhibitor of TLR4) to decipher the anti-inflammatory mechanisms of NO. Cell-free metabolites were analyzed using GCMS and were subjected to pathway enrichment analysis.

RESULTS: NO reduced systemic inflammation, serum lipid peroxidation byproducts, and glucose without affecting serum transaminase levels and hepatic histopathological features. NO attenuated the inflammation-induced loss of antioxidant enzyme activities and mRNA expressions of toll-like receptor-4 (TLR4)/nuclear factor κβ (NFκβ)-dependent inflammatory genes. In TAK-242 pretreated cells, LPS was unable to induce inflammatory and oxidative responses. However, NO treatment in TAK-242 pretreated cells with LPS stimulation further reduced the signs of inflammation and improved hepatoprotective activities. A comparative analysis of the intracellular global metabolome from HepG2 cells with and without NO treatment indicated NO-mediated favorable modulation of intracellular metabolic pathways that support cytoprotective activities.

CONCLUSION: NO protects HepG2 cells from LPS-induced oxidative and inflammatory injury. The hepatoprotective effects of NO are mediated by a TLR4-independent process and through a favorable modulation of the intracellular global metabolome that supports cytoprotection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app