Add like
Add dislike
Add to saved papers

Promoter selectivity of the RhlR quorum-sensing transcription factor receptor in Pseudomonas aeruginosa is coordinated by distinct and overlapping dependencies on C4-homoserine lactone and PqsE.

PLoS Genetics 2023 December 9
Quorum sensing is a mechanism of bacterial cell-cell communication that relies on the production and detection of small molecule autoinducers, which facilitate the synchronous expression of genes involved in group behaviors, such as virulence factor production and biofilm formation. The Pseudomonas aeruginosa quorum sensing network consists of multiple interconnected transcriptional regulators, with the transcription factor, RhlR, acting as one of the main drivers of quorum sensing behaviors. RhlR is a LuxR-type transcription factor that regulates its target genes when bound to its cognate autoinducer, C4-homoserine lactone, which is synthesized by RhlI. RhlR function is also regulated by the metallo-β-hydrolase enzyme, PqsE. We recently showed that PqsE binds RhlR to alter its affinity for promoter DNA, a new mechanism of quorum-sensing receptor activation. Here, we perform ChIP-seq analyses of RhlR to map the binding of RhlR across the P. aeruginosa genome, and to determine the impact of C4-homoserine lactone and PqsE on RhlR binding to different sites across the P. aeruginosa genome. We identify 40 RhlR binding sites, all but three of which are associated with genes known to be regulated by RhlR. C4-homoserine lactone is required for maximal binding of RhlR to many of its DNA sites. Moreover, C4-homoserine lactone is required for maximal RhlR-dependent transcription activation from all sites, regardless of whether it impacts RhlR binding to DNA. PqsE is required for maximal binding of RhlR to many DNA sites, with similar effects on RhlR-dependent transcription activation from those sites. However, the effects of PqsE on RhlR specificity are distinct from those of C4-homoserine lactone, and PqsE is sufficient for RhlR binding to some DNA sites in the absence of C4-homoserine lactone. Together, C4-homoserine lactone and PqsE are required for RhlR binding at the large majority of its DNA sites. Thus, our work reveals three distinct modes of activation by RhlR: i) when RhlR is unbound by autoinducer but bound by PqsE, ii) when RhlR is bound by autoinducer but not bound by PqsE, and iii) when RhlR is bound by both autoinducer and PqsE, establishing a stepwise mechanism for the progression of the RhlR-RhlI-PqsE quorum sensing pathway in P. aeruginosa.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app