Add like
Add dislike
Add to saved papers

ALDOB/KAT2A interactions epigenetically modulate TGF-β expression and T cell functions in hepatocellular carcinogenesis.

BACKGROUND AIMS: Crosstalk between tumor cells and immune cells enables tumor cells to escape immune surveillance and dictate responses to immunotherapy. Previous studies have identified that downregulation of the glycolytic enzyme fructose-1,6-bisphosphate aldolase B (ALDOB) in tumor cells orchestrated metabolic programming to favor hepatocellular carcinogenesis (HCC). However, it remains elusive whether and how ALDOB expression in tumor cells affects the tumor microenvironment in HCC.

APPROACH RESULTS: We found that ALDOB downregulation was negatively correlated with CD8+ T cell infiltration in human HCC tumor tissues but in a state of exhaustion. Similar observations were made in mice with liver-specific ALDOB knockout or in subcutaneous tumor models with ALDOB knockdown. Moreover, ALDOB deficiency in tumor cells upregulates TGF-β expression, thereby increasing the number of Treg cells and impairing the activity of CD8+ T cells. Consistently, a combination of low ALDOB and high TGF-β expression exhibited the worst overall survival for HCC patients. More importantly, the simultaneous blocking of TGF-β and PD-1 with antibodies additively inhibited tumorigenesis induced by ALDOB deficiency in mice. Further mechanistic experiments demonstrated that ALDOB enters the nucleus and interacts with lysine acetyltransferase 2A (KAT2A), leading to inhibition of H3K9 acetylation and thereby suppressing TGFB1 transcription. Consistently, inhibition of KAT2A activity by small molecule inhibitors suppressed TGF-β and HCC.

CONCLUSIONS: Our study has revealed a novel mechanism by which a metabolic enzyme in tumor cells epigenetically modulates TGF-β signaling, thereby enabling cancer cells to evade immune surveillance and affect their response to immunotherapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app