Add like
Add dislike
Add to saved papers

An integrated and multi-functional droplet-based microfluidic platform for digital DNA amplification.

Digital DNA amplification is a powerful method for detecting and quantifying rare nucleic acids. In this study, we developed a multi-functional droplet-based platform that integrates the traditional digital DNA amplification workflow into a one-step device. This platform enables efficient droplet generation, transition, and signal detection within a 5-min timeframe, distributing the sample into a uniform array of 4 × 104 droplets (variation <2%) within a chamber. Subsequent in-situ DNA amplification, fluorescence detection, and signal analysis were carried out. To assess the platform's performance, we quantitatively detected the human epidermal growth factor receptor (EGFR) mutation and human papillomavirus (HPV) mutation using digital polymerase chain reaction (dPCR) and digital loop-mediated isothermal amplification (dLAMP), respectively. The fluorescence results exhibited a positive, linear, and statistically significant correlation with target DNA concentrations ranging from 101 to 105 copies/μL, demonstrating the capability and feasibility of the integrated device for dPCR and dLAMP. This platform offers high-throughput droplet generation, eliminates droplet fusion and transition, is user-friendly, reduces costs compared to current methods, and holds potential for thermocycling and isothermal nucleic acid quantification with high sensitivity and accuracy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app