Add like
Add dislike
Add to saved papers

Bidirectional Charge Transfer at the Heme Iron in Reversible and Quasi-irreversible Cytochrome P450 Inhibition.

Inorganic Chemistry 2023 September 23
The coordination bonding between inhibitor ligands and heme iron plays a critical role in disrupting the essential catalytic functions of cytochrome P450 enzymes (P450s). Despite its intrinsic importance and consequential implications for human health, our current understanding of coordination bonding in P450 inhibition remains limited. To address this knowledge gap, we conducted a systematic theoretical analysis of the complexes between a ferric or a ferrous heme model and representative inhibitor ligands. Specifically, we evaluated the charge-transfer (CT) effect within these complexes by employing a series of theoretical methods based on density functional theory (DFT). Through a comprehensive analysis, we unveiled the relative significance of ligand-to-heme forward CT in the ferric and ferrous complexes of reversible inhibitors. In contrast, backward CT dominates over forward CT in the ferrous heme complexes of quasi-irreversible inhibitors. Further analysis using the compact frontier orbital method underscores the elevated electron-accepting abilities of quasi-irreversible inhibitors for π backdonation, which greatly amplifies their binding affinity for the ferrous heme. This study sheds light on the intricate mechanisms underlying P450 inhibition and provides valuable insights for future inhibitor design and development.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app