Add like
Add dislike
Add to saved papers

Whey protein hydrolysates improve high-fat-diet-induced obesity by modulating the brain-peripheral axis of GLP-1 through inhibition of DPP-4 function in mice.

PURPOSE: Obesity is a growing global health concern. Recent literature indicates a prominent role of glucagon-like peptide-1 (GLP-1) in glucose metabolism and food intake. The synergistic action of GLP-1 in the gut and brain is responsible for its satiety-inducing effect, suggesting that upregulation of active GLP-1 levels could be an alternative strategy to combat obesity. Dipeptidyl peptidase-4 (DPP-4) is an exopeptidase known to inactivate GLP-1, suggesting that its inhibition could be a crucial strategy for effectively extending the half-life of endogenous GLP-1. Peptides derived from partial hydrolysis of dietary proteins are gaining traction due to their inhibitory activity on DPP-4.

METHODS: Whey protein hydrolysate from bovine milk (bmWPH) was produced using simulated in situ digestion, purified using RP-HPLC, and characterized for DPP-4 inhibition. The antiadipogenic and antiobesity activity of bmWPH was then studied in 3T3-L1 preadipocytes and high-fat diet-induced obesity (HFD) mice model, respectively.

RESULTS: The dose-dependent inhibitory effect of bmWPH on the catalytic activity of DPP-4 was observed. Additionally, bmWPH suppressed adipogenic transcription factors and DPP-4 protein levels, leading to a negative effect on preadipocyte differentiation. In an HFD mice model, co-administration of WPH for 20 weeks downregulated adipogenic transcription factors, resulting in a concomitant reduction in whole body weight and adipose tissues. Mice fed with bmWPH also showed a marked reduction in DPP-4 levels in WAT, liver, and serum. Furthermore, HFD mice fed with bmWPH exhibited increased serum and brain GLP levels, which led to a significant decrease in food intake.

CONCLUSION: In conclusion, bmWPH reduces body weight in HFD mice by suppressing appetite through GLP-1, a satiety-inducing hormone, in both the brain and peripheral circulation. This effect is achieved through modulation of both the catalytic and non-catalytic activity of DPP-4.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app