Add like
Add dislike
Add to saved papers

Hybrid adiabatic pulse with asymmetry (HAPY): An asymmetric adiabatic pulse with an application in pulsed arterial spin labeling at 7T.

PURPOSE: A new class of asymmetric adiabatic radiofrequency (RF) pulses, Hybrid Adiabatic Pulse with asYmmetry (HAPY), is designed to be used as the labeling pulse for Pulsed Arterial Spin labeling (PASL) at 7T to reduce overall specific absorption rate (SAR) while maintaining high labeling efficiency with B 0 $$ {\mathrm{B}}_0 $$ and B 1 + $$ {\mathrm{B}}_1^{+} $$ inhomogeneities.

METHODS: Realistic Δ B 0 $$ \Delta {\mathrm{B}}_0 $$ and B 1 + $$ {\mathrm{B}}_1^{+} $$ distributions were extracted from multiple in vivo scans. The proposed class of asymmetric pulses was parameterized and optimized considering these conditions. Simulation and phantoms experiments were performed to compare the optimized pulses with HS-3, GOIA, and trFOCI pulses. In vivo experiments were conducted to demonstrate the application of HAPY in PICORE PASL at 7T, compared with the GOIA and trFOCI pulses.

RESULTS: HAPYs with different amounts of pulse energy reduction are obtained by the proposed optimization framework. Both simulation and phantom experiments demonstrate that HAPY achieves high labeling efficiency and high selectivity along the critical side despite B 0 $$ {\mathrm{B}}_0 $$ off-resonance and low B 1 + $$ {\mathrm{B}}_1^{+} $$ amplitude. In vivo experiments reveal that HAPY is able to generate robust perfusion signal with less overall SAR or shorter pulse repetition time, compared to the GOIA and trFOCI pulses.

CONCLUSION: The HAPY class of pulses, obtained via systematic optimization tailored to the application of PASL at 7T, reduces power deposition without affecting labeling efficiency, which provides a prospect of further exploiting the benefits of ultra-high field in ASL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app