Add like
Add dislike
Add to saved papers

Glycation-mediated tissue-level remodeling of brain meningeal membrane by aging.

Aging Cell 2023 Februrary 29
Collagen is a prominent target of nonenzymatic glycation, which is a hallmark of aging and causes functional alteration of the matrix. Here, we uncover glycation-mediated structural and functional changes in the collagen-enriched meningeal membrane of the human and mouse brain. Using an in vitro culture platform mimicking the meningeal membrane composed of fibrillar collagen, we showed that the accumulation of advanced glycation end products (AGEs) in the collagen membrane is responsible for glycation-mediated matrix remodeling. These changes influence fibroblast-matrix interactions, inducing cell-mediated ECM remodeling. The adherence of meningeal fibroblasts to the glycated collagen membrane was mediated by the discoidin domain-containing receptor 2 (DDR2), whereas integrin-mediated adhesion was inhibited. A-kinase anchoring protein 12 (AKAP12)-positive meningeal fibroblasts in the meningeal membrane of aged mice exhibited substantially increased expression of DDR2 and depletion of integrin beta-1 (ITGB1). In the glycated collagen membrane, meningeal fibroblasts increased the expression of matrix metalloproteinase 14 (MMP14) and less tissue inhibitor of metalloproteinase-1 (TIMP1). In contrast, the cells exhibited decreased expression of type I collagen (COL1A1). These results suggest that glycation modification by meningeal fibroblasts is intimately linked to aging-related structural and functional alterations in the meningeal membrane.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app