Add like
Add dislike
Add to saved papers

Endogenous mitochondrial double-stranded RNA is not an activator of the type I interferon response in human pancreatic beta cells.

BACKGROUND: Type 1 diabetes (T1D) is an autoimmune disease characterized by the progressive destruction of pancreatic beta cells. Interferon-α (IFNα), an antiviral cytokine, is expressed in the pancreatic islets in early T1D, which may be secondary to viral infections. However, not all patients harboring a type I IFN signature present signals of viral infection, suggesting that this response might be initiated by other "danger signals". Accumulation of mitochondrial double-stranded RNA (mtdsRNA; a danger signal), secondary to silencing of members of the mitochondrial degradosome, PNPT1 and SUV3, has been described to activate the innate immune response.

METHODS: To evaluate whether mtdsRNA represents a "danger signal" for pancreatic beta cells in the context of T1D, we silenced PNPT1 and/or SUV3 in slowly proliferating human insulin-secreting EndoC-βH1 cells and in non-proliferating primary human beta cells and evaluated dsRNA accumulation by immunofluorescence and the type I IFN response by western blotting and RT-qPCR.

RESULTS: Only the simultaneous silencing of PNPT1/SUV3 induced dsRNA accumulation in EndoC-βH1 cells but not in dispersed human islets, and there was no induction of a type I IFN response. By contrast, silencing of these two genes individually was enough to induce dsRNA accumulation in fibroblasts present in the human islet preparations.

CONCLUSIONS: These data suggest that accumulation of endogenous mtdsRNA following degradosome knockdown depends on the proliferative capacity of the cells and is not a mediator of the type I IFN response in human pancreatic beta cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app