Add like
Add dislike
Add to saved papers

Inhibition of XBP1 Alleviates LPS-Induced Cardiomyocytes Injury by Upregulating XIAP through Suppressing the NF-κB Signaling Pathway.

Inflammation 2021 January 17
Cardiomyocytes injury caused by sepsis is a complication of common clinical critical illness and an important cause of high mortality in intensive care unit (ICU) patients. Therefore, lipopolysaccharide (LPS)-induced H9c2 cells were used to simulate the cardiomyocytes injury in vitro. The aim of this study was to investigate whether X-box binding protein 1 (XBP1) exacerbated LPS-induced cardiomyocytes injury by downregulating Xlinked inhibitor of apoptosis protein (XIAP) through activating the NF-κB signaling pathway. After transfection or LPS induction, XBP1 expression was detected by RT-qPCR analysis and Western blot analysis. The viability and apoptosis of H9c2 cells was detected by MTT assay and TUNEL assay. The protein expression related to apoptosis and NF-κB signaling pathway was detected by Western blot analysis. The inflammation and oxidative stress in H9c2 cells was evaluated by their commercial kits. Dual-luciferase reporter assay and chromatin immunoprecipitation (CHIP) assay were used to determine the combination of XBP1 and XIAP. As a result, LPS promoted the XBP1 expression in H9c2 cells. XBP1 was combined with XIAP. Inhibition of XBP1 increased viability, and inhibited apoptosis, inflammation, and oxidative stress of LPS-induced H9c2 cells by suppressing the NF-κB signaling pathway, which was partially reversed by the inhibition of XIAP. In conclusion, inhibition of XBP1 alleviates LPS-induced cardiomyocytes injury by upregulating XIAP through suppressing the NF-κB signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app