Add like
Add dislike
Add to saved papers

Hybrid Bioprinting of Zonally Stratified Human Articular Cartilage Using Scaffold-Free Tissue Strands as Building Blocks.

The heterogeneous and anisotropic articular cartilage is generally studied as a layered structure of "zones" with unique composition and architecture, which is difficult to recapitulate using current approaches. A novel hybrid bioprinting strategy is presented here to generate zonally stratified cartilage. Scaffold-free tissue strands (TSs) are made of human adipose-derived stem cells (ADSCs) or predifferentiated ADSCs. Cartilage TSs with predifferentiated ADSCs exhibit improved mechanical properties and upregulated expression of cartilage-specific markers at both transcription and protein levels as compared to TSs with ADSCs being differentiated in the form of strands and TSs of nontransfected ADSCs. Using the novel hybrid approach integrating new aspiration-assisted and extrusion-based bioprinting techniques, the bioprinting of zonally stratified cartilage with vertically aligned TSs at the bottom zone and horizontally aligned TSs at the superficial zone is demonstrated, in which collagen fibers are aligned with designated orientation in each zone imitating the anatomical regions and matrix orientation of native articular cartilage. In addition, mechanical testing study reveals a compression modulus of ≈1.1 MPa, which is similar to that of human articular cartilage. The prominent findings highlight the potential of this novel bioprinting approach for building biologically, mechanically, and histologically relevant cartilage for tissue engineering purposes.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app