Add like
Add dislike
Add to saved papers

Knockdown of LncRNA DLX6-AS1 inhibits HK-2 cell pyroptosis via regulating miR-223-3p/NLRP3 pathway in lipopolysaccharide-induced acute kidney injury.

Sepsis-induced acute kidney injury (AKI) represents a severe medical complication. Recently, there is growing evidence indicating the regulatory role of long non-coding RNAs (lncRNAs) in AKI pathophysiology. The present study investigated lncRNA DLX6 antisense RNA 1 (DLX6-AS1) expression in septic AKI patients and to decipher the relevant mechanisms underlying DLX6-AS1-mediated HK-2 cell pyroptosis in lipopolysaccharide (LPS)-induced AKI. The results revealed that DLX6-AS1 was up-regulated in the serum from septic AKI patients. DLX6-AS1 expression were positively associated with the creatinine levels in the serum from the septic AKI patients. In vitro studies showed that LPS induced cytotoxicity and enhanced DLX6-AS1 expression of HK-2 cells; increased NLR family pyrin domain containing 3 (NLRP3), interleukin (IL)-1β and IL-18 expression. DLX6-AS1 overexpression promoted cytotoxicity and pyroptosis of HK-2 cells; while DLX6-AS1 knockdown counteracted the LPS-induced cytotoxicity and pyroptosis of HK-2 cells. More importantly, DLX6-AS1 sponged miR-223-3p resulting in repression of miR-223-3p expression in HK-2 cells. MiR-223-3p could bind to the 3' untranslated region of NLRP3, which results in the suppressed NLRP3 expression of HK-2 cells. Further rescue experiments showed that enhanced miR-223-3p expression partially reversed the cytotoxicity and pyroptosis of HK-2 cells upon LPS stimulation or with DLX6-AS1 overexpression. Conclusively, this study identified enhanced DLX6-AS1 expression in the serum from AKI patients. Further mechanistic findings deciphered that DLX6-AS1 mediated LPS-mediated cytotoxicity and pyroptosis in HK-2 via miR-223-3p/NLRP3 axis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app