Add like
Add dislike
Add to saved papers

STAT1-avtiviated LINC00961 regulates myocardial infarction by the PI3K/AKT/GSK3β signaling pathway.

Myocardial infarction (MI) remains a severe cardiac disease because of its high incidence and mortality worldwide. A growing body of recent investigations have confirmed that LINC00961 acts as a tumor suppressor in diverse malignancies. However, the biological significance of LINC00961 and its molecular mechanism in MI are still elusive. Hypoxia is the leading cause of MI and induces myocardial injury. In this study, we found the upregulated expression of LINC00961 in cardiomyocytes H9c2 after hypoxia treatment. Knockdown of LINC00961 ameliorated hypoxia-induced cell injury by facilitating cell viability while repressing cell apoptosis. The significant increase of signal transducer and activator of transcription 1 (STAT1) expression and phosphorylation levels was observed in hypoxia-induced cells and proved to exacerbate hypoxia injury. In addition, STAT1 transcriptionally activated LINC00961 by binding to LINC00961 promoter. Furthermore, our results validated that suppressing LINC00961 contributed to the remarkable diminution in the phosphorylation levels of phosphoinositide 3-kinases (PI3K), AKT, and glycogen synthase kinase-3β (GSK3β). Inhibition of PI3K/AKT signaling or GSK3β pathway rescued the effects of LINC00961 knockdown on the hypoxia-induced injury of cardiomyocytes. Namely, we concluded that STAT1-avtiviated LINC00961 accelerated MI via the PI3K/AKT/GSK3β pathway, which may provide clues for the treatment of patients with MI.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app