Add like
Add dislike
Add to saved papers

Influence of In Vitro Electrical Stimulation on Survival of Spiral Ganglion Neurons.

Patients scheduled for cochlear implantation often retain residual hearing in the low frequencies. Unfortunately, some patients lose their residual hearing following implantation and the reasons for this are not well understood. Evidence suggests that electrotoxicity could be one of the factors responsible for this late adverse effect. Therefore, the aim of this study was to investigate the survival of spiral ganglion neurons (SGN) subjected to in vitro electrical stimulation (ES). A stimulation setup was developed to provide defined electrical fields at given points of the chamber. SGN isolated from Sprague Dawley rats (P3-4) were dissociated and cultured in the chamber for 24 h prior to biphasic, pulsed electrical field exposure for another 24 h. The current varied in the range of 0 to 2 mA and the pulse width from 10 to 400 μs. Neurite growth and survival were evaluated with respect to the charge density at the position of the cells. Non-exposed SGN cultures served as control. Charge densities below 2.2 μC·cm-2 ·phase-1 appeared to have no effect on SGN survival and neurite outgrowth. Charge densities above 4.9 μC cm-2 ·phase-1 were detrimental to almost all cells in culture. After fitting results to a sigmoidal dose response curve, a LD50 of 2.9 μC cm-2 ·phase-1 was calculated. This screening regarding survival and outgrowth of SGN provides parameters that could be used to further investigate the effect of ES on SGN and to develop possible protection strategies, which could potentially rescue residual hearing in the implanted patients.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app