Add like
Add dislike
Add to saved papers

Thermodynamic and Kinetic study of the removal of Cu 2+ and Pb 2+ ions from aqueous solution using Fe 7 S 8 nanomaterial.

In the present study, pyrrhotite (Fe7 S8 ) was investigated for the removal of Pb2+ and Cu2+ ions from aqueous solution. The Fe7 S8 material was prepared through a solvothermal method and was characterized using XRD. The average particle size for the nanomaterial was determined to be 29.86 ± 0.87 nm using XRD analysis and Scherrer's equation. Batch studies were performed to investigate the effects of pH, time, temperature, interfering ions, and the binding capacity of Pb2+ and Cu2+ ions to the Fe7 S8 nanomaterial. During the pH profile studies, the optimum pH for the binding of Pb2+ and Cu2+ was determined to be pH 5 for both cations. Isotherm studies were conducted from which the thermodynamics and binding capacities for both Cu2+ and Pb2+ were determined. The binding capacity for Pb2+ and Cu2+ binding to the Fe7 S8 were determined to be 0.039 and 0.102 mmol/g, respectively at 25°C. The thermodynamic parameters indicated a ΔG for the sorption of Pb2+ ranged from 5.07 kJ/mol to -2.45 kJ/mol indicating a non-spontaneous process was occurring. Whereas, the ΔG for Cu2+ ion binding ranged from 9.78 kJ/mol to -11.23 kJ/mol indicating a spontaneous process at higher temperatures. The enthalpy indicated an endothermic reaction was occurring for the binding of Pb2+ and Cu2+ to the Fe7 S8 nanomaterial with ΔH values of 55.8 kJ/mol and 153.5 kJ/mol, respectively. Furthermore, the ΔS values for the reactions were positive indicating an increase in the entropy of the system after metal ion binding. Activation energy studies indicated the binding for both Pb2+ and Cu2+ occurred through chemisorption.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app