Journal Article
Review
Add like
Add dislike
Add to saved papers

Phosphoproteomic identification and functional characterization of protein kinase substrates by 2D-DIGE and Phos-tag PAGE.

Protein phosphorylation is one of the most common post-translational modifications in eukaryotes and can regulate diverse properties of proteins. Protein kinases are encoded by more than 500 genes in higher eukaryotes and play central roles in various cellular signaling pathways. Consequently, genetic abnormalities of protein kinases have been implicated in many diseases. To fully understand the complex phosphorylation-mediated signaling networks, it is important to globally identify and functionally characterize in vivo substrates of individual protein kinases. Advances in electrophoresis-based phosphoproteomic technologies such as two-dimensional difference gel electrophoresis (2D-DIGE) following immobilized metal affinity chromatography (IMAC) and phosphate-affinity Phos-tag PAGE have enabled efficient and detailed analysis of protein kinase substrates. Here, we describe physiological functions of the newly identified substrates of several disease-related protein kinases including ERK, PKD and PINK1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app