Add like
Add dislike
Add to saved papers

Strong Preference of the Redox-Neutral Mechanism over the Redox Mechanism for the Ti IV Catalysis Involved in the Carboamination of Alkyne with Alkene and Diazene.

Titanium catalysis generally prefers redox-neutral mechanisms. Yet it has been reported that titanium could promote bond formations in a way similar to reductive elimination. Accordingly, redox catalytic cycles involving TiIV /TiII cycling have been considered. By studying, as an example, the carboamination of alkynes with alkenes and azobenzene catalyzed by the [TiIV ]=NPh imido complex, we performed DFT computations to gain an understanding of how the "abnormal" catalysis takes place, thereby allowing us to clarify whether the catalysis really follows TiIV /TiII redox mechanisms. The reaction first forms an azatitanacyclohexene by alkyne addition to the [TiIV ]=NPh bond, followed by alkene insertion. The azatitanacyclohexene can either undergo Cα -Cγ coupling, to afford bicyclo[3.1.0]imine, or β-H elimination, to yield a [TiIV ]-H hydride, which then undergoes Cα =Cβ or Cγ =Cδ insertion to give an α,β- or β,γ-unsaturated imine, respectively. Both the geometric and electronic structures indicate that the catalytic cycles proceed through redox-neutral mechanisms. The alternative redox mechanisms (e.g., by N-H or C-H reductive elimination) are substantially less favorable. We concluded that electronically, the TiIV catalysis intrinsically favors the redox-neutral mechanism, because a redox pathway would involve TiII structures either in the triplet ground state or in the high-lying open-shell singlet state, but the involvement of triplet TiII structures is spin-forbidden and that of singlet TiII structures is energetically disadvantageous.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app