Add like
Add dislike
Add to saved papers

Cryptdin-2 predicts intestinal injury during heatstroke in mice.

Intestinal injury-induced bacterial translocation and endotoxemia are important in the pathophysiological process of heatstroke. However, the underlying mechanism remains to be fully elucidated. Previous studies using 2D-gel electrophoresis found that defensin-related cryptdin-2 (Cry-2), an intestinal α-defensin, is upregulated in intestinal tissues during heatstroke in mice, and that treatment with ulinastatin, a multivalent enzyme inhibitor, reduced heat-induced acute lung injury. To investigate the association between Cry-2 and heat stress (HS)-induced intestinal injury and the probable protective role of ulinastatin, the present study examined the intestinal expression of Cry-2 via histopathologic analysis and reverse transcription-quantitative polymerase chain reaction analysis in mice with heatstroke. The heat-stressed mice were exposed to different core temperatures and cooling treatments, and intestinal pathological changes and Chiu scores were determined. Chemical markers of intestinal injury, serum and intestinal concentrations of diamine oxidase (DAO) and D-lactic acid (D-Lac), and serum and intestinal concentrations of Cry-2 were also determined. Correlations were analyzed using Spearman's correlation analysis. It was found that HS upregulated the expression of Cry-2, and the serum and intestinal concentrations of Cry-2 were correlated with the severity of HS-induced intestinal damage, indicated by pathology scores and concentrations of DAO and D-lac. Ulinastatin protected the intestines from HS-induced injury and downregulated the expression of Cry-2, which was also correlated with the extent of intestinal injury. Therefore, ulinastatin administration may be beneficial for patients with heatstroke, and Cry-2 may be a novel predictor of HS-induced intestinal injury.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app