Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Photoluminescence Enhancement through Symmetry Breaking Induced by Defects in Nanocrystals.

Nano Letters 2017 August 10
We present a theoretical model for the effect of symmetry breaking introduced by the doping of semiconductor nanocrystals with Coulomb impurities. The presence of a Coulomb center breaks the nanocrystal symmetry and affects its optical properties through the mixing of the hole spin and parity sublevels, breaking the selection rules responsible for the exciton dark state in undoped nanocrystals. After reviewing the effects on the exciton fine structure and optical selection rules using symmetry theory, we present a perturbative model to quantify the effects. We find that the symmetry breaking proceeds by two mechanisms: First, mixing by even parity terms in the Coulomb multipole expansion results in an exciton fine structure consisting of three optically active doublets which are polarized along x, y, and z axes with a ground optically passive dark exciton state, and second, odd parity terms which break inversion symmetry significantly activate optical transitions which are optically forbidden in the unperturbed nanocrystal due to both spin and parity selection rules. In the case of small sized "quasi-spherical" nanocrystals, the introduction of a single positively charged Coulomb center is shown here to result in significant enhancement of the radiative decay rate at room temperatures by up to a factor of 10.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app