Add like
Add dislike
Add to saved papers

Long-term treatment with sergliflozin etabonate improves disturbed glucose metabolism in KK-A(y) mice.

Sergliflozin etabonate, a novel oral selective low-affinity sodium glucose cotransporter (SGLT2) inhibitor, improves hyperglycemia by suppressing renal glucose reabsorption, in which SGLT2 participates as a dominant transporter. In the present study, we examined the antidiabetic profile of sergliflozin etabonate in a diabetic model, KK-A(y) mice, with symptoms of obesity and hyperinsulinemia. The blood glucose level was monitored in non-fasted female KK-A(y) mice after a single oral administration of sergliflozin etabonate. The non-fasting blood glucose level was reduced in a dose-dependent manner after a single oral administration of sergliflozin etabonate (39% reduction at 2 h after a dose of 30 mg/kg). The effects of long-term administration of sergliflozin etabonate on the blood glucose level were assessed in female KK-A(y) mice in several studies (4-day, 8-week, and 9-week administration study), in which sergliflozin etabonate was administered in the diet. The non-fasting blood glucose and plasma insulin were both lowered dose-dependently in the 4-day administration study. Long-term treatment with sergliflozin etabonate dose-dependently improved the hyperglycemia and prevented body weight gain in the 8-week study. In addition to the improvement in glycemic control, fatty liver and pancreatic beta-cell abnormalities were ameliorated in mice fed sergliflozin etabonate in the 9-week study. These data indicate that SGLT2 inhibitors could be useful to improve hyperglycemia resulting from insulin resistance without pancreatic beta-cell abuse or body weight gain. SGLT2 inhibitors may simultaneously realize both a systemic negative energy balance and correction of hyperglycemia.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app