Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Anti-inflammatory effects of azithromycin in cystic fibrosis airway epithelial cells.

We aimed at identifying molecular mechanisms for anti-inflammatory effects of azithromycin (AZM) suggested by clinical evidences. IL-8 expression and DNA binding activity of two key pro-inflammatory transcription factors (TF), NF-kappaB and AP-1, were investigated in cystic fibrosis (CF) and isogenic non-CF airway epithelial cell lines. AZM reduced about 40% of IL-8 mRNA and protein expression (n=9, p=0.02, and n=4, p=0.00011) in CF cells reaching the levels of non-CF cells. In the presence of AZM we found about 50% and 70% reduction of NF-kappaB and AP-1 DNA binding, respectively (n=3, p=0.01, and n=3, p=0.0017), leading to levels of non-CF cells. The relevance of NF-kappaB and AP-1 in regulating IL-8 promoter transcriptional activity was demonstrated by gene reporter assays (n=4, p=8.54x10(-7), and n=4, p=6.45x10(-6)). Our data support the anti-inflammatory effects of AZM in CF cells, indicating inhibition of transcription of pro-inflammatory genes as possible mechanism, thus providing a rationale for the possible use of specific TF inhibitors for therapy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app