We have located links that may give you full text access.
Clinical Trial
Clinical Trial, Phase II
Journal Article
Research Support, N.I.H., Extramural
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
A prospective trial of infliximab therapy for refractory uveitis: preliminary safety and efficacy outcomes.
Archives of Ophthalmology 2005 July
OBJECTIVE: Infliximab, a monoclonal antibody against tumor necrosis factor alpha, is approved by the US Food and Drug Administration for treatment of numerous autoimmune disorders. We conducted a prospective, open-label phase 2 clinical trial to assess the effectiveness of infliximab in treating refractory autoimmune uveitis.
METHODS: We prospectively enrolled 23 patients from the uveitis clinic of the Casey Eye Institute, Portland, Ore, into this trial. All patients meeting eligibility criteria received 3 infliximab infusions at weeks 0, 2, and 6. Clinical success was ascertained at week 10. Patients meeting initial criteria for success received an infusion at week 14 and every 8 weeks thereafter, with dose escalation permitted for breakthrough inflammation, and underwent outcome measurements at week 50.
RESULTS: All patients underwent outcome assessment at week 10. Eighteen (78%) of these subjects met criteria for clinical success at this time. Success was judged by the composite clinical end point of visual acuity, control of intraocular inflammation, ability to taper concomitant medication therapy, and improvement in inflammatory signs on fluorescein angiography and/or ocular coherence tomography. Successful grading required improvement in at least 1 of 4 subcomponents and worsening in none. Seven of 14 patients enrolled for 1 year continued infliximab therapy and maintained their successful grading. Five did not complete 1 year of treatment because of significant adverse events, and 2 terminated treatment early for reasons unrelated to the study. Serious adverse events that were potentially related to infliximab included pulmonary embolus, congestive heart failure, lupus-like reaction in 2, and vitreous hemorrhage in 2 patients. Antinuclear antibodies developed in 15 of 20 enrolled patients receiving 3 or more infusions.
CONCLUSIONS: Infliximab was an effective short-term immunosuppressive agent in most of the patients, with 18 of 23 meeting criteria for clinical success at week 10. Infliximab was effective in the long term in all patients able to complete 50 weeks of therapy. Although some patients achieved clear benefit, the rate of serious toxic effects was unexpectedly high. Further long-term studies are warranted to determine the safety and efficacy of infliximab in treating intraocular inflammation.
METHODS: We prospectively enrolled 23 patients from the uveitis clinic of the Casey Eye Institute, Portland, Ore, into this trial. All patients meeting eligibility criteria received 3 infliximab infusions at weeks 0, 2, and 6. Clinical success was ascertained at week 10. Patients meeting initial criteria for success received an infusion at week 14 and every 8 weeks thereafter, with dose escalation permitted for breakthrough inflammation, and underwent outcome measurements at week 50.
RESULTS: All patients underwent outcome assessment at week 10. Eighteen (78%) of these subjects met criteria for clinical success at this time. Success was judged by the composite clinical end point of visual acuity, control of intraocular inflammation, ability to taper concomitant medication therapy, and improvement in inflammatory signs on fluorescein angiography and/or ocular coherence tomography. Successful grading required improvement in at least 1 of 4 subcomponents and worsening in none. Seven of 14 patients enrolled for 1 year continued infliximab therapy and maintained their successful grading. Five did not complete 1 year of treatment because of significant adverse events, and 2 terminated treatment early for reasons unrelated to the study. Serious adverse events that were potentially related to infliximab included pulmonary embolus, congestive heart failure, lupus-like reaction in 2, and vitreous hemorrhage in 2 patients. Antinuclear antibodies developed in 15 of 20 enrolled patients receiving 3 or more infusions.
CONCLUSIONS: Infliximab was an effective short-term immunosuppressive agent in most of the patients, with 18 of 23 meeting criteria for clinical success at week 10. Infliximab was effective in the long term in all patients able to complete 50 weeks of therapy. Although some patients achieved clear benefit, the rate of serious toxic effects was unexpectedly high. Further long-term studies are warranted to determine the safety and efficacy of infliximab in treating intraocular inflammation.
Full text links
Related Resources
Trending Papers
Prevention and management of venous thrombosis in patients with cirrhosis.British Journal of Haematology 2024 August 26
Hodgkin lymphoma: 2025 update on diagnosis, risk-stratification, and management.American Journal of Hematology 2024 September 6
Arrhythmogenic Mitral Valve Prolapse: Can We Risk Stratify and Prevent Sudden Cardiac Death?Arrhythmia & Electrophysiology Review 2024
Clinical Evaluation and Management of Thrombotic Microangiopathy.Arthritis & Rheumatology 2024 Februrary
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app
All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.
By using this service, you agree to our terms of use and privacy policy.
Your Privacy Choices
You can now claim free CME credits for this literature searchClaim now
Get seemless 1-tap access through your institution/university
For the best experience, use the Read mobile app