Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Localization of soluble beta-carbonic anhydrase in the marine diatom Phaeodactylum tricornutum. Sorting to the chloroplast and cluster formation on the girdle lamellae.

A beta-carbonic anhydrase (CA) in the marine diatom Phaeodactylum tricornutum (PtCA1) is encoded by the nuclear genome. This enzyme was previously found to be important for the operation of photosynthesis with a high affinity for dissolved inorganic carbon. A cDNA sequence that encodes PtCA1 (ptca1) was shown to possess a presequence of 138 bp (pre138), which encodes an N-terminal sequence of 46 amino acids (Pre46AA) that does not exist in the mature PtCA1. In this study, pre138 was ligated with the enhanced green fluorescent protein (GFP) gene (egfp), and introduced into P. tricornutum by microprojectile bombardment. Subsequently, the expressed Pre46AA-GFP fusion was shown to be localized in the chloroplast stroma, whereas the expressed GFP without Pre46AA was localized in the cytoplasm. Insertion of the DNA sequence, encoding a mature region of ptca1 (mptca1) between pre138 and egfp, resulted in the formation of particles with concentrated GFP fluorescence in the stroma of P. tricornutum. These particles, 0.3 to 3.0 mum in size, were shown to be distinct from the mitochondria and localized on the surface of the putative girdle lamella. The attachment of the initial one-half of the pre138 to the mptca1-egfp fusion caused the expressed GFP fusion to accumulate in areas surrounding the chloroplast, presumably due to the presence of the endoplasmic reticulum signal encoded by the initial half-sequence and to the absence of the chloroplast transit sequence. These results indicate that PtCA1 is targeted to the stroma by the bipartite sequences of Pre46AA and that the observed GFP particles are formed specifically in the stroma due to the function of the mptca1.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app