Journal Article
Research Support, N.I.H., Extramural
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Positive feedback regulation between AKT activation and fatty acid synthase expression in ovarian carcinoma cells.

Oncogene 2005 May 20
Activation of AKT and overexpression of fatty acid synthase (FAS) are frequently observed in human ovarian cancer. To explore a possible connection between AKT and FAS, immunohistochemical analyses were conducted on an ovarian cancer tissue microarray, which revealed a significant correlation between phosphorylated AKT (phospho-AKT) and expression of FAS. To investigate the relationship between phospho-AKT and FAS in vitro, a variety of experiments employing a specific phosphatidylinositol 3-OH kinase (PI3K) inhibitor (LY294002), inducible PTEN expression in PTEN-null cells, or AKT1 siRNA demonstrated that phosphatidylinositol-3 kinase (PI3K)/AKT signaling modulates FAS expression. In contrast, inhibition of FAS activity by the drug C75 resulted in downregulation of phospho-AKT and increased cell death. To explore the functional relationship between phospho-AKT and FAS, we used SKOV3, C200, and OVCAR10 ovarian carcinoma cells, which have constitutively active AKT, and OVCAR5 cells, which have very low basal phospho-AKT levels. Treatment with LY294002 abolished AKT activity and potentiated apoptosis induced by FAS inhibitors cerulenin or C75 only in cells with constitutively active AKT, suggesting that constitutive activation of AKT protects against FAS inhibitor-induced cell death. Furthermore, inhibition of FAS activity by cerulenin or C75 resulted in downregulation of phospho-AKT, which preceded the induction of apoptosis. To investigate the relationship between phospho-AKT and FAS in vivo, severe combined immunodeficient mice injected intraperitoneally with SKOV3 cells were treated with C75. Growth of SKOV3 xenografts was markedly inhibited by C75. Analysis of the levels of phospho-AKT and FAS in C75-treated tumors revealed concordant downregulation of phospho-AKT and FAS. Collectively, our findings are consistent with a working model in which AKT activation regulates FAS expression, at least in part, whereas FAS activity modulates AKT activation.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app