Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Progesterone upregulates calcitonin gene-related peptide and adrenomedullin receptor components and cyclic adenosine 3'5'-monophosphate generation in Eker rat uterine smooth muscle cell line.

Calcitonin gene-related peptide (CGRP) and adrenomedullin (AM), two potent smooth-muscle relaxants, have been shown to cause uterine relaxation. Both CGRP- and AM-binding sites in the uterus increase during pregnancy and decrease at labor and postpartum. These changes in binding sites appear to be related to the changes in calcitonin receptor-like receptor (CRLR), receptor activity-modified protein 1 (RAMP1), RAMP2, and RAMP3 mRNA levels. It is not clear, however, whether the changes in the receptor components occur in the myometrial cells and whether the steroid hormones can directly alter these receptor components in the muscle cells. In addition, the mechanism of CGRP and AM signaling in the rat myometrium is not well understood. Therefore, we examined the mRNA expression of CGRP- and AM-receptor components, G protein Galphas, CGRP, and AM stimulation of cAMP and cGMP, and the effects of progesterone on these parameters in the Eker rat uterine myometrial smooth-muscle cell line (ELT3). ELT3 cells expressed CGRP- and AM-receptor components CRLR, RAMP1, RAMP2, and RAMP3. Expression of CRLR and RAMP1 mRNA increased with progesterone treatment and decreased with estradiol-17beta treatment. However, RAMP2 and RAMP3 mRNA expressions were unaltered by both progesterone and estradiol. Progesterone increased (P<0.05) Galphas expression and augmented CGRP- and AM-induced increases in cAMP levels. In uterine smooth-muscle cells, the antagonist to Galphas protein NF449 decreased basal as well as CGRP- and AM-stimulated cAMP levels. None of the cell treatments affected cyclic GMP production. Our results suggest that the progesterone-stimulated increases in CGRP and AM receptors, Galphas protein levels, and cAMP generation in the myometrial cells may be responsible for increased uterine relaxation sensitivity to CGRP and AM during pregnancy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app