Comparative Study
Journal Article
Add like
Add dislike
Add to saved papers

High-resolution source imaging in mesiotemporal lobe epilepsy: a comparison between MEG and simultaneous EEG.

Magnetic source imaging is claimed to have a high accuracy in epileptic focus localization and may be a guide for epilepsy surgery. Non-lesional mesiotemporal lobe epilepsy (MTLE), the most common form of epilepsy operated on, has different etiologies, which may affect the choice of surgical approach. The authors compared whole-head magnetoencephalography (MEG) with high-resolution EEG for source identification in MTLE. Nineteen patients with unilateral, nonlesional MTLE underwent a simultaneous 151-channel CTF MEG (CTF Systems, Inc., Port Coquitlam, British Columbia, Canada) and 64-channel EEG recordings with sleep induction. Three independent observers selected spikes from the EEG and MEG recordings separately. Only when there was interobserver agreement (kappa>0.4) on the presence of spikes in recordings were consensus spikes averaged. EEG and MEG equivalent current dipoles (ECD) were then integrated in the head model of the patient reconstructed from MRI. The results were compared with intraoperative electrocorticography findings. Spikes were detected in 32% of MEGs and 42% of EEGs. No patient showed MEG spikes only. Equivalent current dipole modeling correctly localized the source to the temporal lobe in four out of five MEG and three out of eight EEG recordings. MEG localized sources were more superficial and EEG localized sources were deeper. Unfortunately, basal temporal lobe areas were only partially covered by the sensor helmet of the MEG setup. Best correlation between EEG or MEG findings and electrocorticography findings was between horizontal EEG dipole orientation and prominent neocortical spiking; these patients also had a less favorable prognosis. Magnetic source imaging is currently unlikely to alter the surgical management of MTLE. The yield of spikes is too low, and ECD modeling shows only partial correlation with electrocorticography findings. Moreover, the whole-head MEG helmet provides insufficient coverage of the temporal lobe.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app