Comparative Study
Evaluation Studies
Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Development of group- and serotype-specific one-step SYBR green I-based real-time reverse transcription-PCR assay for dengue virus.

A quantitative one-step SYBR Green I-based reverse transcription (RT)-PCR system was developed for the detection and differentiation of four different dengue virus serotypes in acute-phase serum samples. A set of group- and serotype-specific primer pairs was designed against conserved sequences in the core region and evaluated for clinical diagnosis. A linear relationship was obtained between the amount of input RNA and cycle threshold (Ct) value over a range of 10 to 10(7) PFU per ml of cell culture-derived dengue viruses. The detection limit of the group-specific primer pair was between 4.1 and 43.5 PFU/ml for four dengue serotypes. The detection limit of each of the serotype-specific primer pairs was calculated to be 10 PFU/ml for dengue virus serotype 1 (DEN-1), 4.6 PFU/ml for DEN-2, 4.1 PFU/ml for DEN-3, and 5 PFU/ml for DEN-4. Comparisons between the one-step SYBR Green-based RT-PCR assay and the conventional cell culture method in the clinical diagnosis of dengue virus infection from acute-phase serum samples of confirmed dengue patients were performed. The results showed that 83 and 67% of 193 acute-phase serum samples tested were positive by the one-step SYBR Green-based RT-PCR method and cell culture method, respectively. Further analysis showed that the one-step SYBR Green-based RT-PCR method could detect twice as many acute-phase serum samples with positive dengue-specific immunoglobulin M (IgM) and/or IgG antibodies than cell culture method. Our results demonstrate the potential clinical application of the one-step SYBR Green I-based RT-PCR assay for the detection and differentiation of dengue virus RNA.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app