Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Chemokine-cytokine cross-talk. The ELR+ CXC chemokine LIX (CXCL5) amplifies a proinflammatory cytokine response via a phosphatidylinositol 3-kinase-NF-kappa B pathway.

It is well established that cytokines can induce the production of chemokines, but the role of chemokines in the regulation of cytokine expression has not been fully investigated. Exposure of rat cardiac-derived endothelial cells (CDEC) to lipopolysaccharide-induced CXC chemokine (LIX), and to a lesser extent to KC and MIP-2, activated NF-kappaB and induced kappaB-driven promoter activity. LIX did not activate Oct-1. LIX-induced interleukin-1beta and tumor necrosis factor-alpha promoter activity, and up-regulated mRNA expression. Increased transcription and mRNA stability both contributed to cytokine expression. LIX-mediated cytokine gene transcription was inhibited by interleukin-10. Transient overexpression of kinase-deficient NF-kappaB-inducing kinase (NIK) and IkappaB kinase (IKK), and dominant negative IkappaB significantly inhibited LIX-mediated NF-kappaB activation in rat CDEC. Inhibition of G(i) protein-coupled signal transduction, poly(ADP-ribose) polymerase, phosphatidylinositol 3-kinase, and the 26 S proteasome significantly inhibited LIX-mediated NF-kappaB activation and cytokine gene transcription. Blocking CXCR2 attenuated LIX-mediated kappaB activation and kappaB-driven promoter activity in rat CDEC that express both CXCR1 and -2, and abrogated its activation in mouse CDEC that express only CXCR2. These results indicate that LIX activates NF-kappaB and induces kappaB-responsive proinflammatory cytokines via either CXCR1 or CXCR2, and involved phosphatidylinositol 3-kinase, NIK, IKK, and IkappaB. Thus, in addition to attracting and activating neutrophils, the ELR(+) CXC chemokines amplify the inflammatory cascade, stimulating local production of cytokines that have negative inotropic and proapoptotic effects.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app