Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Basic fibroblast growth factor upregulates cyclooxygenase-2 in I407 cells through p38 MAP kinase.

The intestinal cell line I407 responds to basic fibroblast growth factor (bFGF) by upregulating cyclooxygenase-2 (COX-2) mRNA and protein expression and increasing PGE(2) production. bFGF treatment of I407 cells results in phosphorylation of p38, and the p38 inhibitor SB-203580 abrogates bFGF-induced PGE(2) synthesis. Wild-type p38alpha (p38alphaWT) and dominant-negative p38alpha (p38alphaDN) stable transfectant clones of I407 cells were used to examine the role of the p38 MAP kinase pathway in the events controlling PGE(2) synthesis after treatment with bFGF. Treatment of p38alphaWT clones with bFGF resulted in increased COX-2 protein levels and PGE(2) synthesis similar to those seen in bFGF-treated control-transfected cells. In contrast, the p38alphaDN clones failed to upregulate COX-2 protein or increase PGE(2) synthesis when treated with bFGF. Exogenous arachidonate did not restore PGE(2) synthesis by p38alphaDN cells. bFGF treatment increased COX-2 mRNA stability, and the p38 inhibitor SB-203580 attenuated COX-2 mRNA stability in bFGF-treated I407 cells. These data demonstrate a crucial role for p38alpha in growth factor-induced PGE(2) synthesis by intestinal cells. Furthermore, they indicate that p38 activity is required at a step distal to arachidonate release, most likely COX-2 upregulation, because exogenous arachidonate did not restore PGE(2) synthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app