Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Consequences of altered TGF-beta expression and responsiveness in breast cancer: evidence for autocrine and paracrine effects.

Oncogene 2002 January 4
To characterize the impact of increased production of TGF-beta in a xenograft model of human breast cancer, TGF-beta-responsive MDA-231 cells were genetically modified by stable transfection so as to increase their production of active TGF-beta1. Compared with control cells, cells that produced increased amounts of TGF-beta proliferated in vitro more slowly. In vivo, however, tumors derived from these cells exhibited increased proliferation and grew at an accelerated pace. To evaluate the role of autocrine TGF-beta signaling, cells were also transfected with a dominant-negative truncated type II TGF-beta receptor (TbetaRII). Disruption of autocrine TGF-beta signaling in the TGF-beta-overexpressing cells reduced their in vivo growth rate. Co-inoculation of Matrigel with the TGF-beta-overexpressing cells expressing the truncated TbetaRII compensated for their diminished in vivo growth capacity, compared with the TGF-beta-overexpressing cells with an intact autocrine loop. Tissue invasion by the tumor was a distinctive feature of the TGF-beta-overexpressing cells, whether or not the autocrine loop was intact. Furthermore, tumors derived from TGF-beta-overexpressing cells, irrespective of the status of the autocrine TGF-beta-signaling pathway, had a higher incidence of lung metastasis. Consistent with the suggestion that TGF-beta's enhancement of invasion and metastasis is paracrine-based, we observed no significant differences among the cell clones in an in vitro invasion assay. Thus, in this experimental model system in vitro assays of cell proliferation and invasion do not accurately reflect in vivo observations, perhaps due to autocrine and paracrine effects of TGF-beta that influence the important in vivo-based phenomena of tumor growth, invasion, and metastasis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app