Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Isolation of neuronal precursors from differentiating P19 embryonal carcinoma cells by neuronal T alpha 1-promoter-driven GFP.

The induction of pluripotent P19 embryonal carcinoma (EC) cells with retinoic acid results in their differentiation into cells that resemble neurons, glia, and fibroblasts. To isolate and enrich the developing neurons from heterogeneously differentiating P19 EC cells, we used a recently introduced protocol combining the expression of green fluorescent protein (GFP) driven by a tissue-specific promoter and fluorescence-activated cell sorting. Cells were transfected with the gene for GFP, which is under the control of the neuronal T alpha 1 tubulin promoter. After four days of retinoic acid treatment, GFP was specifically detected in cells undergoing neuronal differentiation. Sorting of fluorescent differentiating P19 EC transfectants yielded populations highly enriched in neuronal precursors and neurons. Immunoreactivity for nestin and neurofilament was observed in 80 and 25% of the sorted cell population, respectively. These results demonstrate that differentiated neuronal precursor cells can be efficiently isolated from differentiating pluripotent embryonic cells in vitro, suggesting that this method can reproducibly provide homogeneous materials for further studies on neurogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app