Add like
Add dislike
Add to saved papers

In vitro biotransformation of the new antipsychotic agent, RWJ-46344 in rat hepatic S9 fraction: API-MS/MS/MS identification of metabolites.

The in vitro biotransformation of the antipsychotic agent, RWJ-46344 was studied after incubation with rat hepatic S9 fraction in the presence of an NADPH-generating system. Unchanged RWJ-46344 (approximately 37% of the sample) plus 12 metabolites were profiled, quantified, and tentatively identified on the basis of API (ionspray)-MS/MS/MS data. The proposed metabolic pathways for RWJ-46344 are proposed, and the six metabolic pathways are 1, O-dealkylation; 2, piperidinyl oxidation; 3, N-debenzylation; 4, phenyl hydroxylation; 5, dehydration; and 6, reduction. Pathways 1 to 3 formed O-desisopropyl RWJ-46344 (M3, approximately 13% of the sample) and its hydroxy-metabolite (M5, approximately 8%), hydroxypiperidinyl RWJ-46344 (M1, approximately 5%) and a phenylpiperidinyl metabolite (M8, approximately 24%) as major and moderate metabolites. Eight minor metabolites (each < 2%) were formed via a combination of six steps. RWJ-46344 is metabolized substantially by this rat hepatic system.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app