Journal Article
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Complement-mediated injury reversibly disrupts glomerular epithelial cell actin microfilaments and focal adhesions.

BACKGROUND: Foot process effacement and condensation of the glomerular epithelial cell (GEC) cytoskeleton are manifestations of passive Heymann nephritis, a model of complement-mediated membranous nephropathy.

METHODS: To study the effects of complement on the actin cytoskeleton in this model, we have used an in vitro system in which GECs are sublethally injured using a combination of complement-fixing anti-Fx1A IgG and human serum as a source of complement. We examined the effects of this injury on the organization of the cytoskeleton and focal contacts using immunohistology and immunochemistry.

RESULTS: By immunofluorescence, sublethal complement-mediated injury was accompanied by a loss of actin stress fibers and focal contacts but retention of matrix-associated integrins. Full recovery was seen after 18 hours. Western blot analysis showed no change in the cellular content of the focal contact proteins. Inhibition of the calcium-dependent protease calpain did not prevent injury. In addition, cycloheximide during recovery did not inhibit the reassembly of stress fibers or focal contacts. Injury was associated with a reduction in tyrosine phosphorylation of paxillin and a currently unidentified 200 kDa protein, but inhibition of tyrosine phosphatase activity with sodium vanadate did not prevent injury. Cellular adenosine triphosphate content was significantly reduced in injured cells.

CONCLUSION: These results document reversible, complement-dependent disruption of actin microfilaments and focal contacts leading to the dissociation of the cytoskeleton from matrix-attached integrins. This may explain the altered cell-matrix relationship accompanying podocyte effacement in membranous nephropathy.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app