Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, U.S. Gov't, P.H.S.
Add like
Add dislike
Add to saved papers

Treatment with farnesyl-protein transferase inhibitor induces regression of mammary tumors in transforming growth factor (TGF) alpha and TGF alpha/neu transgenic mice by inhibition of mitogenic activity and induction of apoptosis.

Mouse mammary tumor virus-transforming growth factor alpha (MMTV-TGF alpha) and MMTV-TGF alpha/neu transgenic mice develop mammary tumors after a long latency and therefore provide useful model systems for breast cancer with its recognized activation of receptor tyrosine kinase signaling. We used these mice to study the antitumor effect of L-744,832 (FTI), a potent and selective inhibitor of farnesyl-protein transferase, and hence of Ras function. A total of 55 mice were assigned randomly to treatment with FTI or vehicle, and one-half of the mice were crossed over after initial treatment to the opposite group. L-744,832 induced reversible regression of mammary tumors that was paralleled by a decrease in serum levels of TGF alpha secreted by the tumor cells. There was no difference in response to treatment with FTI between MMTV-TGF alpha mice, in which tumorigenesis was accelerated by multiparity or the chemical carcinogen 7,12-dimethylbenzanthracene, and MMTV-TGF alpha/neu mice. The tumor histological type had no impact on FTI sensitivity. For mechanistic analyses, tumor excision biopsies were obtained from 12 mice before and after treatment with L-744,832. In these samples, tumor regression was paralleled biochemically by inhibition of mitogen-activated protein kinase activity and biologically by an increase in G1-phase and decrease in S-phase fractions, as well as induction of apoptosis. These results suggest that the potential clinical use of FTI could be expanded to include cancers harboring activated receptor tyrosine kinases as well as those containing activated Ras.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app