Journal Article
Review
Add like
Add dislike
Add to saved papers

Modern Approach to Diabetic Retinopathy Diagnostics.

Diagnostics 2024 August 24
This article reviews innovative diagnostic approaches for diabetic retinopathy as the prevalence of diabetes mellitus and its complications continue to escalate. Novel techniques focus on early disease detection. Technological innovations, such as teleophthalmology, smartphone-based photography, artificial intelligence with deep learning, or widefield photography, can enhance diagnostic accuracy and accelerate the treatment. The review highlights teleophthalmology and handheld photography as promising solutions for remote eye care. These methods revolutionize diabetic retinopathy screening, offering cost-effective and accessible solutions. However, the use of these techniques may be limited by insurance coverage in certain world regions. Ultra-widefield photography offers a comprehensive view of up to 80.0% of the retina in a single image, compared to the 34.0% coverage of the traditional seven-field imaging protocol. It allows retinal imaging without pupil dilation, especially for individuals with compromised mydriasis. However, they also have drawbacks, including high costs, artifacts from eyelashes, eyelid margins, and peripheral distortion. Recent advances in artificial intelligence and machine learning, particularly through convolutional neural networks, are revolutionizing diabetic retinopathy diagnostics, enhancing screening efficiency and accuracy. FDA-approved Artificial Intelligence-powered devices such as LumineticsCore™, EyeArt, and AEYE Diagnostic Screening demonstrate high sensitivity and specificity in diabetic retinopathy detection. While Artificial Intelligence offers the potential to improve patient outcomes and reduce treatment costs, challenges such as dataset biases, high initial costs, and cybersecurity risks must be considered to ensure safety and efficiency. Nanotechnology advancements further enhance diagnosis, offering highly branched polyethyleneimine particles with fluorescein sodium (PEI-NHAc-FS) for better fluorescein angiography or vanadium oxide-based metabolic fingerprinting for early detection.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2025 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app