Add like
Add dislike
Add to saved papers

Impact of Zwitterions on the Acidity Constant and Glucose Sensitivity of Block Copolymers with Phenylboronic Acid.

Molecular assemblies that transform in response to pH and saccharide concentration are promising nanomaterials in the field of biomedicine, and polymeric micelles of amphiphilic polymers with phenylboronic acids (PBAs) have been studied. Herein, we report the impact of zwitterions on the acidity constant for the collapse and the glucose sensitivity of a polymeric micelle produced from a diblock copolymer comprising polyacrylamides with PBA and zwitterionic carboxybetaine (PAEBB- b -PCBAAm). The diblock copolymer was synthesized through reversible addition-fragmentation chain-transfer polymerization followed by deprotection. PAEBB- b -PCBAAm produced micellar aggregates in aqueous solutions at a neutral pH, and the polymeric micelles collapsed at a pH of 11.0 because the PBA transformed into a hydroxyboronate anion. The p K a decreased in the presence of glucose owing to boronate ester formation. The PCBAAm chain significantly increased the pH at which the molecular assemblies dissociated. This is probably because the p K a of boronic acid increased through the dipolar interaction of zwitterions, and/or the zwitterionic polymer corona is valid for screening of PBA ionization and electrostatic repulsion of boronate anions. This study on the modulation of p K a through the zwitterionic interaction can facilitate the molecular design of pH- and saccharide-responsive biomaterials.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app