Add like
Add dislike
Add to saved papers

Synthesis and structures of cobalt-expanded zirconium- and cerium-oxo clusters as precursors for mixed-metal oxide thin films.

Transforming current complementary metal-oxide-semiconductor (CMOS) technology to fabricate memory chips and microprocessors into environmentally friendlier electronics requires the development of new approaches to resource- and energy-efficient electron transport and switching materials. Metal and multi-metal oxide layers play a key role in high-end technical applications. However, these layers are commonly produced through high-energy and high-temperature procedures. Herein, we demonstrate our first attempts to obtain stimuli-responsive mixed-metal oxide thin films from solution-processed molecular precursors under milder conditions. The molecular compounds of interest were prepared by one-pot reactions of a CoII carboxylate complex, triethylamine (Et3 N), N -butyldiethanolamine (H2 bda), and a hexanuclear complex [Ce6 O4 (OH)4 (piv)12 ] (Hpiv = pivalic acid) or [Zr6 O4 (OH)4 (ib)12 (H2 O)]·3Hib (Hib = isobutyric acid) in acetonitrile solution. The resulting charge-neutral, heterometallic coordination compounds display a ligand-supported pentanuclear {CeIV3CoIII2} core (in 1) and a dodecanuclear {ZrIV6CoII6} core (in 2), exhibiting thermal stability up to ca. 100 °C in air. Compound 2 was deposited and analyzed on Au(111) and SiO2 /Si(100) surfaces to explore its potential as a single-molecule precursor for the preparation of atomically precise, complex mixed-metal oxide thin films. The adsorption characteristics of it demonstrate the ability to form stable agglomerates on the investigated surfaces.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app