Add like
Add dislike
Add to saved papers

A high density nanopore 3-triangulene kagome lattice.

Nanoscale 2024 April 31
Nanopore-containing two-dimensional materials have been explored for a wide range of applications including filtration, sensing, catalysis, energy storage and conversion. Triangulenes have recently been experimentally synthesized in a variety of sizes. In this regard, using these systems as building blocks, we theoretically examined 3-triangulene kagome crystals with inherent holes of ∼12 Å diameter and a greater density array of nanopores (≥1013 cm-2 ) compared to conventional 2D systems. The energetic, electronic, and transport properties of pristine and B/N-doped 3-triangulene kagome crystals were evaluated through a combination of density functional theory and non-equilibrium Green's function method. The simulated scanning tunneling microscopy images clearly capture electronic perturbation around the doped sites, which can be used to distinguish the pristine system from the doped systems. The viability of precisely controlling the band structure and transport properties by changing the type and concentration of doping atoms is demonstrated. The findings presented herein can potentially widen the applicability of these systems that combine unique electronic properties and intrinsically high-density pores, which can pave the way for the next generation of nanopore-based devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app