Add like
Add dislike
Add to saved papers

A dual amplified gold nanoparticle-based biosensor for ultrasensitive and selective detection of fibrin.

Ultrasensitive, selective, and non-invasive detection of fibrin in human serum is critical for disease diagnosis. So far, the development of high-performance and ultrasensitive biosensors maintains core challenges for biosensing. Herein, we designed a novel ribbon nanoprobe for ultrasensitive detection of fibrin. The probe contains gold nanoparticles (AuNPs) that can not only link with homing peptide Cys-Arg-Glu-Lys-Ala (CREKA) to recognize fibrin but also carry long DNA belts to form G-quadruplex-based DNAzyme, catalyzing the chemiluminescence of luminol-hydrogen peroxide (H2 O2 ) reaction. Combined with the second amplification procedure of rolling circle amplification (RCA), the assay exhibits excellent sensitivity with a detection limit of 0.04 fmol L-1 fibrin based on the 3-sigma. Furthermore, the biosensor shows high specificity on fibrin in samples because the structure of antibody-fibrin-homing peptide was employed to double recognize fibrin. Altogether, the simple and inexpensive approach may present a great potential for reliable detection of biomarkers.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app