Add like
Add dislike
Add to saved papers

DF-QSM: Data Fidelity based Hybrid Approach for Improved Quantitative Susceptibility Mapping of the Brain.

NMR in Biomedicine 2024 April 23
Quantitative Susceptibility Mapping (QSM) is an advanced magnetic resonance imaging (MRI) technique to quantify the magnetic susceptibility of the tissue under investigation. Deep learning methods have shown promising results in deconvolving the susceptibility distribution from the measured local field obtained from the MR phase. Although existing deep learning based QSM methods can produce high-quality reconstruction, they are highly biased toward training data distribution with less scope for generalizability. This work proposes a hybrid two-step reconstruction approach to improve deep learning based QSM reconstruction. The susceptibility map prediction obtained from the deep learning methods has been refined in the framework developed in this work to ensure consistency with the measured local field. The developed method was validated on existing deep learning and model-based deep learning methods for susceptibility mapping of the brain. The developed method resulted in improved reconstruction for MRI volumes obtained with different acquisition settings, including deep learning models trained on constrained (limited) data settings.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app