Add like
Add dislike
Add to saved papers

18 F-FDG Dedicated Breast PET Complementary to Breast MRI for Evaluating Early Response to Neoadjuvant Chemotherapy.

Purpose To compare quantitative measures of tumor metabolism and perfusion using fluorine 18 (18 F) fluorodeoxyglucose (FDG) dedicated breast PET (dbPET) and breast dynamic contrast-enhanced (DCE) MRI during early treatment with neoadjuvant chemotherapy (NAC). Materials and Methods Prospectively collected DCE MRI and 18 F-FDG dbPET examinations were analyzed at baseline (T0) and after 3 weeks (T1) of NAC in 20 participants with 22 invasive breast cancers. FDG dbPET-derived standardized uptake value (SUV), metabolic tumor volume, and total lesion glycolysis (TLG) and MRI-derived percent enhancement (PE), signal enhancement ratio (SER), and functional tumor volume (FTV) were calculated at both time points. Differences between FDG dbPET and MRI parameters were evaluated after stratifying by receptor status, Ki-67 index, and residual cancer burden. Parameters were compared using Wilcoxon signed rank and Mann-Whitney U tests. Results High Ki-67 tumors had higher baseline SUVmean (difference, 5.1; P = .01) and SUVpeak (difference, 5.5; P = .04). At T1, decreases were observed in FDG dbPET measures (pseudo-median difference T0 minus T1 value [95% CI]) of SUVmax (-6.2 [-10.2, -2.6]; P < .001), SUVmean (-2.6 [-4.9, -1.3]; P < .001), SUVpeak (-4.2 [-6.9, -2.3]; P < .001), and TLG (-29.1 mL3 [-71.4, -6.8]; P = .005) and MRI measures of SERpeak (-1.0 [-1.3, -0.2]; P = .02) and FTV (-11.6 mL3 [-22.2, -1.7]; P = .009). Relative to nonresponsive tumors, responsive tumors showed a difference (95% CI) in percent change in SUVmax of -34.3% (-55.9%, 1.5%; P = .06) and in PEpeak of -42.4% (95% CI: -110.5%, 8.5%; P = .08). Conclusion 18 F-FDG dbPET was sensitive to early changes during NAC and provided complementary information to DCE MRI that may be useful for treatment response evaluation. Keywords: Breast, PET, Dynamic Contrast-enhanced MRI Clinical trial registration no. NCT01042379 Supplemental material is available for this article. © RSNA, 2024.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app