Add like
Add dislike
Add to saved papers

Electrochromic Devices Based on 2D MoO 3- x /PEDOT:PSS Composite Film with Boosted Ion Transport.

Electrochromic materials allow for optical modulation and have attracted much attention due to their bright future in applications such as smart windows and energy-saving displays. Two-dimensional (2D) molybdenum oxide nanoflakes with combined advantages of high active specific surface area and natural layered structure should be highly potential candidates for electrochromic devices. However, the efficient top-down preparation of 2D MoO3 nanoflakes is still a huge challenge and the sluggish ionic kinetics hinder its electrochromic performance. Herein, we demonstrated a feasible thiourea-assisted exfoliation procedure, which can not only increase the yield but also reduce the thickness of 2D MoO3- x nanoflakes down to a few nanometers. Furthermore, electrophoretic-deposited MoO3- x nanoflakes were combined with poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)-conjugated polymer to simultaneously enhance the ionic kinetics and electronic conductivity, with a diffusion coefficient of 3.09 × 10-10 cm2 s-1 and a charge transport resistance of 33.7 Ω. The prepared 2D MoO3- x /PEDOT:PSS composite films exhibit improved electrochromic performance, including fast switching speed (7 s for bleaching, 5 s for coloring), enhanced coloration efficiency (87.1 cm2 C-1 ), and large transmittance modulation (Δ T = 65%). This study shows outstanding potential for 2D MoO3- x nanoflakes in electrochromic applications and opens new avenues for optimizing the ion transport in inorganic-organic composites, which will be possibly inspired for other electrochemical devices.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app