Add like
Add dislike
Add to saved papers

Effects of Zr dopants on properties of PtNi nanoparticles for ORR catalysis: A DFT modeling.

Pt-based alloys, such as Pt3Ni, are among the best electrocatalysts for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells. Doping of PtNi alloys with Zr was shown to enhance the durability of the operating ORR catalysts. Rationalizing these observations is hindered by the absence of atomic-level data for these tri-metallic materials, even when not exposed to the fuel cell operation conditions. This study aims at understanding structure-property relations in Zr-doped PtNi nanoparticles as a key to their ORR function. In particular, we calculated, using a method based on density functional theory, the most stable chemical orderings of pristine and Zr-doped Pt3Ni particles containing over 400 atoms. We thus clarify (i) preferential location and charge states of Zr atoms in the Pt3Ni NPs; (ii) effect of doping Zr atoms on the stability of the Pt skin of the Pt3Ni NPs; (iii) charge redistribution induced by Zr dopants; (iv) layer-by-layer atomic ordering in the Pt3Ni/Zr NPs with the increasing Zr content; and (v) effect of Zr atoms on the adsorption energies of O and OH species as indicators of the ORR activity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app